matha namo namaha

 
SŨNYAM SĀMYASAMUCCAYE
The Sutra 'Sunyam Samyasamuccaye' says the 'Samuccaya is the same, that Samuccaya is Zero.' i.e., it should be equated to zero. The term 'Samuccaya' has several meanings under different contexts.
i) We interpret, 'Samuccaya' as a term which occurs as a common factor in all the terms concerned and proceed as follows.
Example 1: The equation 7x + 3x = 4x + 5x has the same factor ‘ x ‘ in all its terms. Hence by the sutra it is zero, i.e., x = 0.
Otherwise we have to work like this:

                    7x + 3x = 4x + 5x
                         10x = 9x
                  10x – 9x = 0
                            x = 0
    This is applicable not only for ‘x’ but also any such unknown quantity as follows.
Example 2:      5(x+1) = 3(x+1)
No need to proceed in the usual procedure like

                        5x +  5 = 3x + 3
                        5x – 3x =  3 – 5
                    2x = -2     or     x = -2 ÷ 2 = -1
    Simply think of the contextual meaning of ‘ Samuccaya ‘
    Now Samuccaya is     ( x + 1 )
                                    x + 1 = 0     gives     x = -1
ii) Now we interpret ‘Samuccaya ‘as product of independent terms in expressions like (x+a) (x+b)
Example 3:     ( x + 3 ) ( x + 4) = ( x – 2) ( x – 6 )

                Here Samuccaya is     3 x 4 = 12 = -2 x -6
                Since it is same ,   we derive x = 0
   This example, we have already dealt in type ( ii ) of Paravartya in solving simple equations.
iii) We interpret ‘ Samuccaya ‘ as the sum of the denominators of two fractions having the same numerical numerator.
Consider the example.

                               1            1
                            ____   +  ____   =   0
                            3x-2        2x-1
            for this we proceed by taking L.C.M.

                    (2x-1)+(3x–2)
                   ____________   =   0
                    (3x–2)(2x–1)

                          5x–3
                    __________   =   0
                    (3x–2)(2x–1)

                        5x – 3 = 0        5x = 3

                                3
                        x  = __
                                5
    Instead of this, we can directly put the Samuccaya i.e., sum of the denominators
                i.e., 3x – 2 + 2x - 1 = 5x - 3 = 0
                giving 5x = 3         x = 3 / 5
    It is true and applicable for all problems of the type

                    m           m
                 ____  +  _____   =   0
                 ax+b       cx+d
    Samuccaya is ax+b+cx+d and solution is ( m ≠ 0 )

                        - ( b + d )
                 x =   _________
                           ( a + c )
    iii) We now interpret ‘Samuccaya’ as combination or total.

         If the sum of the numerators and the sum of the denominators be the same, then that sum = 0.

    Consider examples of type

                       ax + b         ax + c
                       _____   =   ______
                       ax + c         ax + b
        In this case,  (ax+b) (ax+b) = (ax+c) (ax+c)
                        a2x2 + 2abx + b2 = a2x2 + 2acx + c2
                                  2abx – 2acx = c2 – b2
                              x ( 2ab – 2ac ) = c2 – b2

                        c2–b2        (c+b)(c-b)       -(c+b)
             x  =   ______   =  _________  =   _____
                       2a(b-c)         2a(b-c)            2a
            As per Samuccaya (ax+b) + (ax+c) = 0
                                                     2ax+b+c = 0
                                                         2ax = -b-c

                                     -(c+b)
                              x  =  ______
                                         2a            Hence the statement.
Example 4:
                             3x + 4        3x + 5
                             ______  =   ______
                             3x + 5        3x + 4
        Since N1 + N2 = 3x + 4 + 3x + 5 = 6x + 9 ,
             And   D1 + D2 = 3x + 4 + 3x + 5 = 6x + 9
             We have N1 + N2 = D1 + D2 = 6x + 9
                    Hence from Sunya Samuccaya we get 6x + 9 = 0
                     6x = -9

                                 -9        -3
                          x =  __   =   __
                                  6          2
Example 5:
                        5x + 7       5x + 12
                        _____   =  _______
                        5x +12       5x + 7
       Hence N1 + N2 = 5x + 7 + 5x + 12 = 10x + 19
            And     D1 + D2 = 5x + 12 + 5x + 7 = 10x + 19
                      N1 + N2 = D1 + D2 gives 10x + 19 = 0
                                    10x = -19

                                         -19
                                  x  =  ____
                                           10
Consider the examples of the type, where N1 + N2 = K ( D1 + D2 ), where K is a numerical constant, then also by removing the numerical constant K, we can proceed as above.
Example 6:

                        2x + 3        x  + 1
                        _____   =   ______
                        4x + 5        2x + 3
        Here N1 + N2 = 2x + 3 +  x + 1 = 3x + 4
                    D1 + D2 = 4x + 5 + 2x + 3 = 6x + 8
                                                             = 2 ( 3x + 4 )
        Removing the numerical factor 2, we get 3x + 4 on both sides.

            3x + 4 = 0     3x = -4     x = - 4 / 3.
v) ‘Samuccaya‘ with the same meaning as above, i.e., case (iv), we solve the problems leading to quadratic equations. In this context, we take the problems as follows;
       If N1 + N2 = D1 + D2 and also the differences
               N1 ~ D1 = N2 ~ D2 then both the things are equated to zero, the solution gives the two values for x.
Example 7:

                     3x + 2     2x + 5
                     _____  = ______
                     2x + 5     3x + 2
    In the conventional text book method, we work as follows :

                        3x + 2            2x + 5
                        _____      =    ______
                        2x + 5            3x + 2

                    ( 3x + 2 ) ( 3x + 2 ) = ( 2x + 5 ) ( 2x + 5 )
                            9x2 + 12x + 4 = 4x2 + 20x + 25
                     9x2 + 12x + 4 - 4x2 - 20x – 25 = 0
                                            5x2 – 8x – 21 = 0
                                    5x2 – 15x + 7x – 21 = 0
                              5x ( x – 3 ) + 7 ( x – 3 ) = 0
                                      (x – 3 ) ( 5x + 7 ) = 0
                                     x – 3 = 0 or 5x + 7 = 0
                                          x = 3 or - 7 / 5
    Now ‘Samuccaya’ sutra comes to help us in a beautiful way as follows :

                    Observe N1 + N2 = 3x + 2 + 2x + 5 = 5x + 7
                                D1 + D2 = 2x + 5 + 3x + 2 = 5x + 7

        Further  N1 ~ D1 = ( 3x + 2 ) – ( 2x + 5 ) = x – 3
                    N2 ~ D2 = ( 2x + 5) – ( 3x + 2 ) = - x + 3 = - ( x – 3 )

        Hence  5x + 7 = 0 , x – 3 = 0
                      5x = -7 , x = 3
                            i.e., x = -7 / 5 , x = 3

        Note that all these can be easily calculated by mere observation.
Example 8:

                            3x + 4       5x + 6
                            ______  =  _____
                            6x + 7       2x + 3

        Observe that
                    N1 + N2 = 3x + 4 + 5x + 6 = 8x + 10
              and D1 + D2 = 6x + 7 + 2x + 3 = 8x + 10

        Further     N1 ~ D1 = (3x + 4) – (6x + 7)
                                   =  3x + 4 – 6x – 7
                                   = -3x – 3  = -3 ( x + 1 )
                      N2 ~ D2  = (5x + 6) – (2x + 3) = 3x + 3 = 3( x + 1)
    By ‘Sunyam Samuccaye’ we have

                    8x + 10 = 0             3( x + 1 ) = 0
                           8x = -10               x + 1 = 0
                             x = - 10 / 8              x = -1
                               = - 5 / 4
vi)‘Samuccaya’ with the same sense but with a different context and application .

         Example 9:

                         1           1            1           1
                      ____  +  _____  =  ____  +  ____
                      x - 4      x – 6       x - 2      x - 8
        Usually we proceed as follows.

                 x–6+x-4                 x–8+x-2
               ___________   =    ___________
                (x–4) (x–6)             (x–2) (x-8)

                    2x-10                 2x-10
                _________     =     _________
                x2–10x+24            x2–10x+16

              ( 2x – 10 ) ( x2 – 10x + 16 ) = ( 2x – 10 ) ( x2 – 10x + 24)
           2x3–20x2+32x–10x2+100x–160 = 2x3–20x2+48x–10x2+100x-240
               2x3 – 30x2 + 132x – 160 = 2x3 – 30x2 + 148x – 240
                                 132x – 160 = 148x – 240
                               132x – 148x = 160 – 240
                                        – 16x = - 80
                                   x = - 80 / - 16 = 5
Now ‘Samuccaya’ sutra, tell us that, if other elements being equal, the sum-total of the denominators on the L.H.S. and their total on the R.H.S. be the same, that total is zero.
    Now D1 + D2 = x – 4 + x – 6 = 2x – 10, and
                D3 + D4 = x – 2 + x – 8 = 2x – 10
By Samuccaya, 2x – 10 gives 2x = 10

                           10
                    x  =  __  =  5
                            2
Example 10:

                1         1            1           1
             ____  + ____  =   ____  +  _____
             x - 8     x – 9      x - 5      x – 12

            D1 + D2 = x – 8 + x – 9 = 2x – 17, and
            D3 + D4 = x – 5 + x –12 = 2x – 17
                    Now 2x – 17 = 0 gives 2x = 17

                                    17
                            x  =  __  =  8½
                                     2
Example 11:

                1           1             1            1
             ____  -  _____  =   ____  -  _____
             x + 7     x + 10      x + 6      x + 9

     This is not in the expected form. But a little work regarding transposition makes the above as follows.

                1          1            1           1
             ____  +  ____  =  ____  +  _____
             x + 7     x + 9      x + 6      x + 10

     Now ‘Samuccaya’ sutra applies

            D1 + D2 = x + 7 + x + 9 = 2x + 16, and
            D3 + D4 = x + 6 + x + 10 = 2x + 16
   Solution is given by 2x + 16 = 0 i.e., 2 x = - 16.
                                                             x = - 16 / 2 = - 8.

Solve the following problems using Sunyam Samya-Samuccaye process.

        1.     7 ( x + 2 ) + 3 ( x + 2 ) = 6 ( x + 2 ) + 5 ( x + 2 )

        2.     ( x + 6 ) ( x + 3 ) = ( x – 9 ) ( x – 2 )

        3.     ( x - 1 ) ( x + 14 ) = ( x + 2 ) ( x – 7 )


                      1                 1
        4.       ______   +  ____    =   0
                  4 x - 3          x – 2


                       4                 4
        5.       _____    +   _____    =   0
                  3x + 1         5x + 7


                    2x + 11         2x+5
        6.         ______   =   _____
                     2x+ 5          2x+11


                    3x + 4            x + 1
        7.         ______   =   _____
                    6x + 7           2x + 3


                    4x - 3             x + 4
        8.         ______   =   _____
                     2x+ 3           3x - 2


      
                   1              1               1              1
        9.     ____  +  ____   =   ____  +  _____
                 x - 2        x - 5         x - 3         x - 4



                     1              1               1               1
        10.     ____  -   ____   =   _____  -  _____
                   x - 7        x - 6         x - 10        x - 9


Sunyam Samya Samuccaye in Certain Cubes:
Consider the problem ( x – 4 )3 + ( x – 6 )3 = 2 ( x – 5 )3. For the solution by the traditional method we follow the steps as given below:

                 ( x – 4 )3 + ( x – 6 )3 = 2 ( x – 5 )3
          x3 – 12x2 + 48x – 64 + x3 – 18x2 + 108x – 216
                                                = 2 ( x3 – 15x2 + 75x – 125 )
             2x3 – 30x2 + 156x – 280 = 2x3 – 30x2 + 150x – 250
                                156x – 280 = 150x – 250
                               156x – 150x = 280 – 250
                                            6x = 30
                                              x = 30 / 6 = 5
 But once again observe the problem in the vedic sense
 We have ( x – 4 ) + ( x – 6 ) = 2x – 10. Taking out the numerical factor 2, we have ( x – 5 ) = 0, which is the factor under the cube on R.H.S. In such a case “Sunyam samya Samuccaye” formula gives that x – 5 = 0. Hence x = 5
Think of solving the problem (x–249)3 + (x+247)3 = 2(x–1)3
The traditional method will be horrible even to think of.
But ( x – 249 ) + ( x + 247 ) = 2x – 2 = 2 ( x – 1 ). And x – 1. on R.H.S. cube, it is enough to state that x – 1 = 0 by the ‘sutra’.
x = 1 is the solution. No cubing or any other mathematical operations.
Algebraic Proof :

        Consider ( x – 2a )3 + ( x – 2b )3 = 2 ( x – a – b )3 it is clear that
                                x – 2a + x – 2b = 2x – 2a – 2b
                                                     = 2 ( x – a – b )
        Now the expression,

         x3 - 6x2a + 12xa2 – 8a3 + x3 – 6x2b + 12xb2 – 8b3  =
                 2(x3–3x2a–3x2b+3xa2+3xb2+6axb–a3–3a2b–3ab2–b3)

             = 2x3–6x2a–6x2b+6xa2+6xb2+12xab–2a3–6a2b–6ab2–2b3
   cancel the common terms on both sides

       12xa2+12xb2–8a3–8b3 = 6xa2+6xb2+12xab–2a3–6a2b–6ab2–2b3
            6xa2 + 6xb2 – 12xab = 6a3 + 6b3 – 6a2b – 6ab2
              6x ( a2 + b2 – 2ab ) = 6 [ a3 + b3 – ab ( a + b )]
                  x ( a – b )2 = [ ( a + b ) ( a2 + b2 –ab ) – ( a + b )ab]
                                  = ( a + b ) ( a2 + b2 – 2ab )
                                  = ( a + b ) ( a – b )2

                             since x = a + b

Solve the following using “Sunyam Samuccaye” process :

            1.     ( x – 3 )3 + ( x – 9 )3 = 2 ( x – 6 )3

            2.     ( x + 4 )3 + ( x – 10 )3 = 2 ( x – 3 )3

            3.     ( x + a + b – c )3 + ( x + b + c – a )3 = 2 ( x + b )3


Example :

                        (x + 2)3         x + 1
                         ______  =   _____
                        (x + 3)3         x + 4
    with the text book procedures we proceed as follows

                x3 + 6x2 + 12x +8          x + 1
                _______________    =   _____
                x3 + 9x2 + 27x +27        x + 4
    Now by cross multiplication,

    ( x + 4 ) ( x3 + 6x2 + 12x + 8 ) = ( x + 1 ) ( x3 + 9x2 + 27x + 27 )
       x4 + 6x3 + 12x2 + 8x + 4x3 + 24x2 + 48x + 32 =
                               x4 + 9x3 + 27x2 + 27x + x3 + 9x2 + 27x + 27
        x4 + 10x3 + 36x2 + 56x + 32 = x4 + 10x3 + 36x2 + 54x + 27
                                  56x + 32 = 54x + 27
                                 56x – 54x = 27 – 32
                                           2x = - 5
                                             x = - 5 / 2
 Observe that ( N1 + D1 ) with in the cubes on
                             L.H.S. is x + 2 + x + 3 = 2x + 5 and

                          N2 + D2 on the right hand side
                               is x + 1 + x + 4 = 2x + 5.

      By vedic formula we have 2x + 5 = 0         x = - 5 / 2.

Solve the following by using vedic method :

                1.
                                (x + 3)3        x+1
                                ______   =   ____
                                (x + 5)3        x+7

                2.
                                (x - 5)3         x - 3
                                ______    =   ____
                                (x - 7)3         x - 9