matha namo namaha


VILOKANAM
The Sutra 'Vilokanam' means 'Observation'. Generally we come across problems which can be solved by mere observation. But we follow the same conventional procedure and obtain the solution. But the hint behind the Sutra enables us to observe the problem completely and find the pattern and finally solve the problem by just observation.
Let us take the equation x + ( 1/x ) = 5/2 Without noticing the logic in the problem, the conventional process tends us to solve the problem in the following way.

                        1        5
                x  + __  =  __
                        x        2

                 x2 + 1         5
                 _____   =   __
                     x            2

                 2x2 + 2 = 5x
                 2x2 – 5x + 2 = 0
                 2x2 – 4x – x + 2 = 0
                 2x (x – 2) – (x – 2) = 0
                    (x – 2) (2x – 1) = 0
                                x – 2 = 0 gives x = 2
                              2x – 1 = 0 gives x = ½

        But by Vilokanam i.e.,, observation

                           1        5
                    x + __  =  __    can be viewed as
                           x        2

                           1              1
                    x + __  =  2 +  __     giving x = 2 or ½.
                           x              2
Consider some examples.
Example 1 :
                         x        x + 2         34
                      ____  +  _____  =   ___
                      x + 2        x            15
In the conventional process, we have to take L.C.M, cross-multiplication. simplification and factorization. But Vilokanam gives

                    34      9 + 25        3        5
                    __  =  _____   =  __  +   __
                    15       5 x 3         5        3

                         x         x + 2         3        5
                      ____  +  _____  =   __  +  __
                      x + 2         x            5        3

        gives
                   x            3                      5
                _____  =   __         or        __
                x + 2         5                      3

            5x = 3x + 6     or     3x = 5x + 10
            2x = 6            or    -2x = 10
              x = 3            or        x = -5
Example 2 :

                x + 5      x + 6          113
                ____  +  _____   =    ___
                x + 6      x + 5           56

        Now,
                113       49 + 64         7          8
                ___   =  _______  =  ___  +  ___
                 56          7 x 8           8          7

                x + 5       7                x+5          8
                ____   =  __        or    ____  =   __
                x + 6       8                x+6          7

            8x + 40 = 7x + 42        7x + 35 = 8x + 48
                                       or
            x = 42 - 40 = 2            -x = 48 – 35 = 13
                 x = 2                or    x = -13.
Example 3:

                    5x + 9      5x – 9         82
                    _____  +  _____  =  2 ___
                    5x - 9      5x + 9         319
At first sight it seems to a difficult problem.
But careful observation gives

                 82        720       841 - 121        29        11
             2 ___   =  ___   =  ________    =  ___  -   __
                319       319          11 x 29         11        29
(Note: 292 = 841, 112 = 121)

            5x + 9     29         -11
            _____  =  __   or   ___
            5x - 9      11          29
(Note: 29 = 20 + 9 = 5 x 4 + 9 ; 11 = 20 – 9 = 5 x 4 – 9 )
i.e.,
         x = 4  or
                      5x + 9        -11
                      _____   =    ___
                      5x - 9          29

            145x + 261 = -55x + 99
            145x + 55x =   99  – 261
                    200x = -162

              -162          -81
        x =  ____   =   ____
                200          100
Simultaneous Quadratic Equations:

Example 1:    x + y = 9 and xy = 14.

        We follow in the conventional way that

        (x – y)2 = (x + y)2 – 4xy = 92 – 4 (14) = 81 - 56 = 25
            x – y = √ 25 = ± 5

                  


             x + y = 9 gives 7 + y = 9
                                       y = 9 – 7 = 2.
Thus the solution is x = 7, y = 2 or x = 2, y = 7.
But by Vilokanam, xy = 14 gives x = 2, y = 7 or x = 7, y = 2 and these two sets satisfy x + y = 9 since 2 + 7 = 9 or 7 + 2 = 9. Hence the solution.
Example 2:     5x – y = 7 and xy = 6.

        xy = 6 gives x = 6, y = 1; x = 1, y = 6;

        x = 2, y = 3; x = 3, y = 2 and of course negatives of all these.
Observe that x = 6, y = 1; x = 1, y = 6: are not solutions because they do not satisfy the equation 5x – y = 7.
But for x = 2, y = 3; 5x – y = 5 (2) – 3 = 10 – 3 = 7 we have 5(3)–2≠7.
Hence x = 2, y = 3 is a solution.
For x = 3, y = 2 we get 5 (3) – 2 = 15 – 2 ≠ 7.
Hence it is not a solution.
Negative values of the above are also not the solutions. Thus one set of the solutions i.e., x = 2, y = 3 can be found. Of course the other will be obtained from solving 5x – y = 7 and 5x + y = -13.

    i.e., x = -3 / 5, y = -10.
Partial Fractions:
Example 1:     Resolve

                      2x + 7
                 ___________    into partial fractions.
                (x + 3) (x + 4)

                             2x + 7                  A                B
       We write    ____________   =   ______   +   ______
                        (x + 3)(x + 4)         (x + 3)         (x + 4)

                                                  A (x + 4) + B (x + 3)
                                             =   __________________
                                                       (x + 3) (x + 4)

                                  2x + 7  ≡    A (x + 4) + B (x + 3).
We proceed by comparing coefficients on either side

     coefficient of x : A + B = 2 ..........(i) X 3

     Independent of x : 4A + 3B = 7 .............(ii)
Solving (ii) – (i) x 3     4A + 3B = 7
                                    3A + 3B = 6
                                   ___________
                                            A = 1

        A = 1 in (i) gives, 1 + B = 2 i.e., B = 1

    Or we proceed as

                              2x + 7    A (x + 4) + B (x + 3).
    Put   x = -3,     2 (-3) + 7  ≡  A (-3 + 4) + B (-3 + 3)
                                    1 = A (1)     ... A = 1.

           x = -4,     2 (- 4) + 7  =  A (-4 + 4) + B (-4 + 3)
                                     -1 = B(-1)    ... B = 1.

                                2x + 7                   1              1
                Thus   ____________    =    _____  +   _____
                          (x + 3) (x + 4)         (x + 3)      (x + 4)

                                       2x + 7
        But by Vilokanam  ____________    can be resolved as
                                  (x + 3) (x + 4)

        (x + 3) + (x + 4) =2x + 7,     directly we write the answer.
Example 2:

                             3x + 13
                        ____________
                        (x + 1) (x + 2)

        from (x + 1),(x + 2) we can observe that

        10 (x + 2) – 7(x + 1) = 10x + 20 – 7x – 7 = 3x + 13

                            3x + 13                  10             7
            Thus      ____________    =   _____   -  _____
                         (x + 1) (x + 2)         x + 1        x + 2
Example 3:

                             9
                        ________
                        x2 + x - 2

        As  x2 + x – 2 = (x – 1) (x + 2) and
                        9 = 3 (x + 2) – 3 (x – 1)
                                        (3x + 6 – 3x + 3 = 9)


                                                 9                       3             3
        We get by Vilokanam,  ____________    =   ____   -   ____
                                            x2 + x – 2             x - 1        x + 2

I. Solve the following by mere observation i.e. vilokanam

        1.                                        2.
                       1       25                                    1         5
                x + __  =  __                            x -  __  =   __
                       x       12                                    x         6

        3.
                    x              x + 1            1
                _____   +   _____  =   9 __
                x + 1              x                9

        4.
                x + 7       x + 9         32
                ____   -   ____   =  ___
                x + 9       x + 7         63

II. Solve the following simultaneous equations by vilokanam.

         1.     x – y = 1, xy = 6         2.     x + y = 7, xy = 10

         3.     2x + 3y = 19, xy = 15

         4.     x + y = 4, x2 + xy + 4x = 24.

III. Resolve the following into partial fractions.

        1.
                        2x - 5
                ____________
                (x – 2) (x – 3)

        2.
                            9
                ____________
                (x + 1) (x – 2)

        3.
                          x – 13
                    __________
                     x2 - 2x - 15

        4.
                       3x + 4
                 __________
                 3x2 + 3x + 2